A Class of New Large-Update Primal-Dual Interior-Point Algorithms for Linear Complementarity Problems

نویسندگان

  • Huaping Chen
  • Mingwang Zhang
  • Yuqin Zhao
چکیده

In this paper we propose a class of new large-update primal-dual interior-point algorithms for P∗(κ) nonlinear complementarity problem (NCP), which are based on a class of kernel functions investigated by Bai et al. in their recent work for linear optimization (LO). The arguments for the algorithms are followed as Peng et al.’s for P∗(κ) complementarity problem based on the self-regular functions [Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual InteriorPoint Algorithms, Princeton University Press, Princeton, 2002]. It is worth mentioning that since this class of kernel functions includes a class of non-self-regular functions as special case, so our algorithms are different from Peng et al.’s and the corresponding analysis is simpler than theirs. The ultimate goal of the paper is to show that the algorithms based on these functions have favorable polynomial complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

Large-update interior point algorithm for LCP

In this paper we propose a new large-update primal-dual interior point algorithm for P∗(κ) linear complementarity problems (LCPs). We generalize the analysis of BER’s primal-dual interior point algorithm for LP to P∗(κ) LCPs. New search directions and proximity measures are proposed based on a new kernel function which has linear growth term. We showed that if a strictly feasible starting point...

متن کامل

A new large - update interior point algorithm for P ∗ ( ) linear complementarity problems

In this paper we propose a new large-update primal-dual interior point algorithm for P∗( ) linear complementarity problems (LCPs). We generalize Bai et al.’s [A primal-dual interior-point method for linear optimization based on a new proximity function, Optim. Methods Software 17(2002) 985–1008] primal-dual interior point algorithm for linear optimization (LO) problem to P∗( ) LCPs. New search ...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

New Primal-dual Interior Point Methods for P∗(κ) Linear Complementarity Problems

In this paper we propose new primal-dual interior point methods (IPMs) for P∗(κ) linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, ψ(t) = t 2−1 2 − R t 1 e q “ 1 ξ −1 ” dξ, q ≥ 1. If a strictly feasible starting point is available and the parameter q = log „...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009